(Universidad Femenina del Sagrado Corazón, 2023) Barrantes Rojas, Roxana Jazmín; Cornejo Sánchez, Jesús Fernando
Esta investigación se centró en evaluar la calidad de la traducción automática mediante el análisis de dos traductores automáticos, utilizando la métrica de evaluación SAE J2450, previamente establecida. Se optó por un enfoque cuantitativo, de nivel exploratorio y se llevó a cabo mediante un diseño de estudio transeccional exploratorio en Lima, Perú. La muestra consistió en dos motores de traducción automática, DeepL y Yandex, a los cuales se les sometió un fragmento de un documento técnico del campo de la automoción. Luego de evaluar ambos traductores automáticos, se determinó que la calidad promedio de sus traducciones es medianamente baja, con un puntaje de 74.50 %. Esto se atribuyó en gran medida a la presencia significativa de errores terminológicos y sintácticos. Asimismo, el resultado de calidad de DeepL fue de un 72.39 %, mientras que Yandex alcanzó un 76.62 %. Ambos casos revelaron una calidad de traducción medianamente baja, con errores de terminología como los más frecuentes. Por último, para mejorar la calidad en las traducciones se recomienda la intervención de un traductor profesional que pueda corregir y optimizar los posibles errores identificados durante el proceso de traducción automática.